

Smart Labs Ventilation Management Program

Otto Van Geet, PE Principal Engineer 303-384-7369 otto.vangeet@nrel.com

Thomas C. Smith President 919-319-4290 <u>tcsmith@3flow.com</u> www.3flow.com

Why Focus on Laboratory Buildings?

- Laboratories use significant energy typically 3 to 4 times more energy than an average office building
- Case examples indicate cost-saving opportunities of 20-40%
- Statutory requirement: Federal building efficiency requirements in Section 431 of EISA 2007 and E.O. 13834

Laboratory Statistics	Nationwide*	Federal Govt**	DOE**	
Laboratory Square Footage % of Total	1%	6%	36%	
Laboratory Energy Usage % of Total	3%	16%	70%	
Laboratory Energy Cost Annually	\$5B	\$700M	\$33M	
Potential Laboratory Energy Savings (20-40%)	\$1 – 2B	\$140 – 280M	\$7 – 13M	

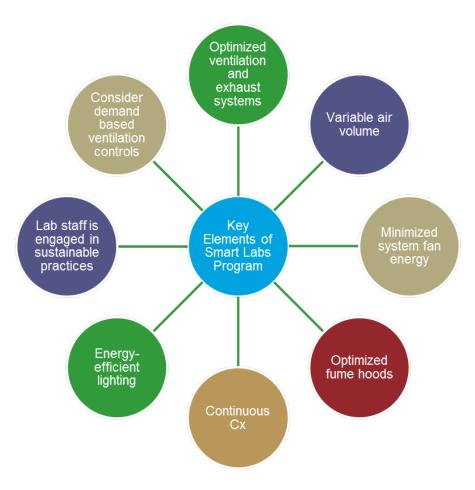
* Values estimated based on the Commercial Buildings Energy Consumption Survey (CBECS) and study completed by Lawrence Berkeley National Laboratory entitled, "Characterizing the Laboratory Market"

** Values estimated based on federal agency data compiled for FEMP's Federal Comprehensive Annual Energy Performance Data

***Zero Energy University Campuses: A 2018 Progress Update on Reaching Campus Energy Goals, NREL, https://www.nrel.gov/docs/fy18osti/71822.pdf

UCI Smart Labs Initiative

Laborato	-		RE Sma			AFTER Smart Lab Retrofit					
Buildin	g Type	Estimated Average ACH	Retrofit VAV or CV	More efficient than code?	UC Irvine Two Decades of Energy Efficiency	Therm s Savings	Total Savings				
Croul Hall	Р	6.6	VAV	~ 20%	2400 40%	40%	40%				
McGaugh Hall	B	9.4	CV	No		66%	59%				
Reines Hall	Р	11.3	CV	No	2,200 57% 67%	77%	69%				
Natural Sciences 2	P,B	9.1	VAV	~20%	2,000 Combined heat and power plant Prioritized "deep efficiency" 48%	62%	50%				
Biological Sciences 3	в	9.0	VAV	~30%	1 naugural pattner President Obama's Better Buildings Challenge	81%	53%				
Calit2	Е	6.0	VAV	~20%		78%	58%				
Gillespie Neuroscience s	M	6.8	CV	~20%	1,000 Adopted goal: LEED Gold NC 58 %	81%	70%				
Sprague Hall	М	7.2	VAV	~20%	1,400 Thermal Campus-funded Energy 71%	83%	75%				
Hewitt Hall	M	8.7	VAV	~20%	1.200 energy projects launched Partnership expanded 588%	77%	62%				
Engineering Hall	E	8.0	VAV	~30%	Adopted goal: Beat Title 24 by 30% In new construction Management performance Improvement tool University vreseents Climate Commitment Climate Commitment Climate Leadership Award S9%	78%	69%				
Averages		8.2	VAV	~20%	1,000 + + + + + + + + + + + + + + + + + +	72%	61%				


Type: P = Physical Sciences, B = Biological Sciences, E = Engineering, M = Medical Sciences

Transforming ENERGY

What is a Smart Labs Program?

A Smart Labs program enables safe and efficient world class science by designing and operating safe and efficient laboratories through optimization of ventilation and exhaust systems, minimization of fan energy, and implementation of smart building controls.

DOE's Better Buildings Smart Labs Accelerator

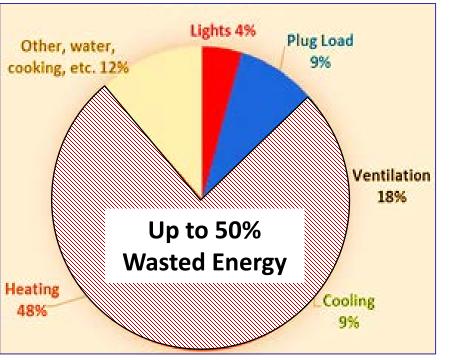
Cus sut I also A so al sustau Dautu

Accelerator Goal:	At least 20% energy reduction over portfolio of laboratory buildings in 10 years or less	Smart Labs Accelerator Partners
Accelerator Sub-Goal:	At least 5% energy reduction in one laboratory by the end of the accelerator	National Laboratory US. Department of Agricultural Edward T. Schafer Agricultural Research Center University of Minnesota University of Illinois at Chicago
Timeframe:	March 2017 – February 2020	Lawrence Berkeley National Laboratory Colorado School of Mines National Aeronautics University of California Los Alamos National Laboratory
	17 organizations 2 affiliate partners	Administration Jee Propulsion Laboratory
End Result:	Showcase projects of partners success, Smart Labs Toolkit, website, training	 Federal Agency Hospital National Laboratory University

Copyright © 2019

5

sforming ENERG



Laboratory Ventilation Management Program

Labs are expensive and complicated

- Contruction = \$250/ft² to \$4000/ft²
- Energy = 150 kBTU/ft² to 1,000 kBTU/ft²
- Annual Energy Cost = \$3 to \$10/ft²

- Airflow ≈ 45% to 85% Energy Use
- Airflow ≈ \$3 to \$9 per cfm-yr.

Energy is wasted by excess airflow, inefficient systems and improper modulation of Flow

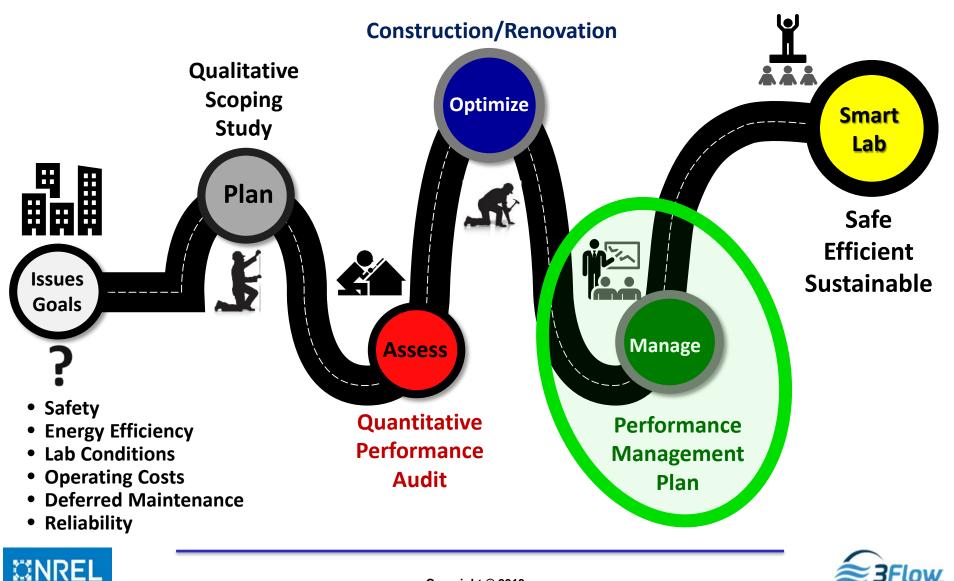
Improperly designed and aging labs can adversely affect research and safety

- Inefficient and costly
- Poor control of environmental conditions
- Failure to meet occupant needs
- Negatively affect recruitment and retention
- Increase risk and potential for liability
- Increase Deferred Maintenance Issues

		Percentage costs of the
Building System	DM Costs	🕻 total DM costs 🛛 💆
HVAC	\$132,917,184	35%
Electrical	\$79,750,310	21%
Exterior Systems	\$49,369,239	13%
Interior Systems	\$41,773,972	11%

Organizations can improve safety, reduce risk and provide workplaces that better facilitate success.

- Attract & retain top talent
- Ensure safety
- Minimize waste
- Improve sustainability
- Maximize resilience
- Accommodate change
- Mitigate risk
- Enhance return on investment



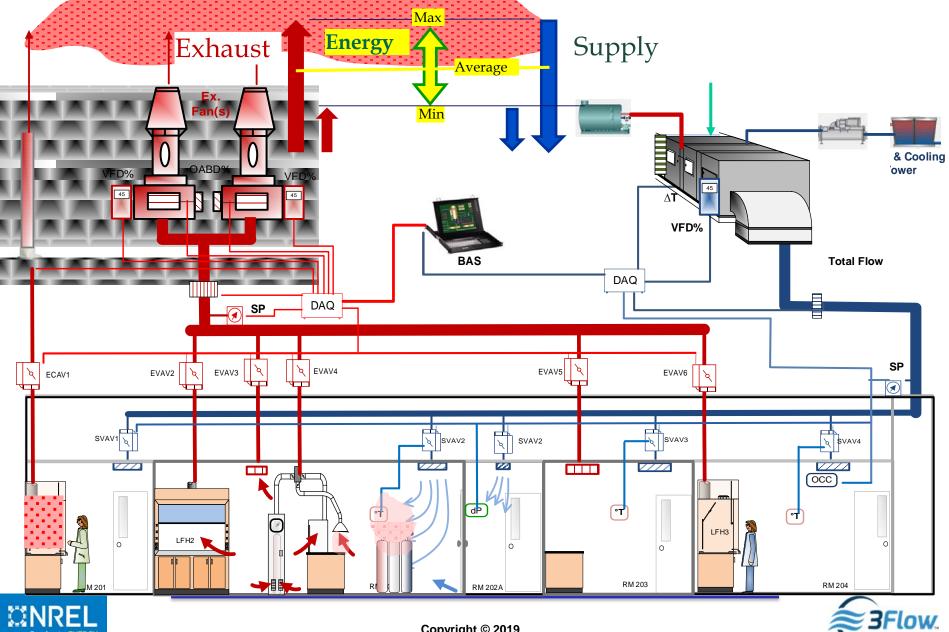
Smart Labs[™] provides a roadmap to success

Success requires a combination of efforts

Design and Mechanical Attributes

- High performance fume hoods
- Variable Air Volume Systems
- High efficiency mechanical systems
- Building information and control systems

• Management and Leadership


- Occupant Information and Floor Plans
- Ventilation Safety Demand Assessment
- System Diagrams and Airflow Specification
- Airflow Management Program (AMP)
- LVMP Manager / Coordinator

Lab Ventilation Management Plan

Ventilation drives both safety and energy use

Copyright © 2019

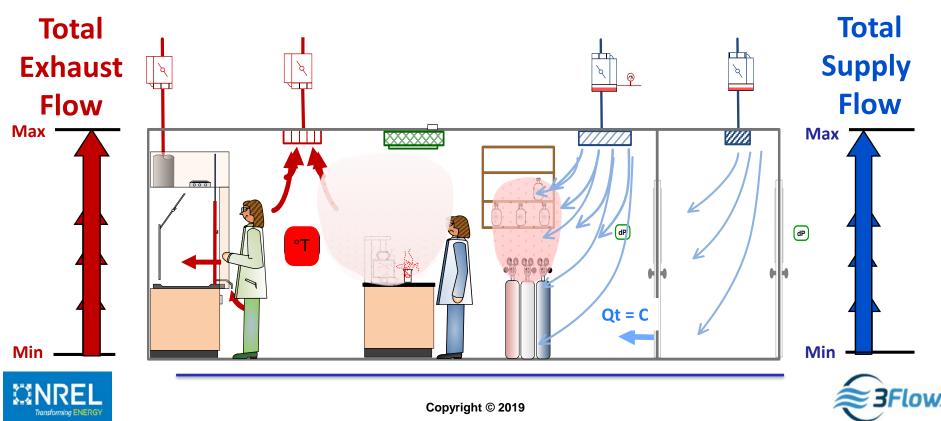
ansforming ENERGY

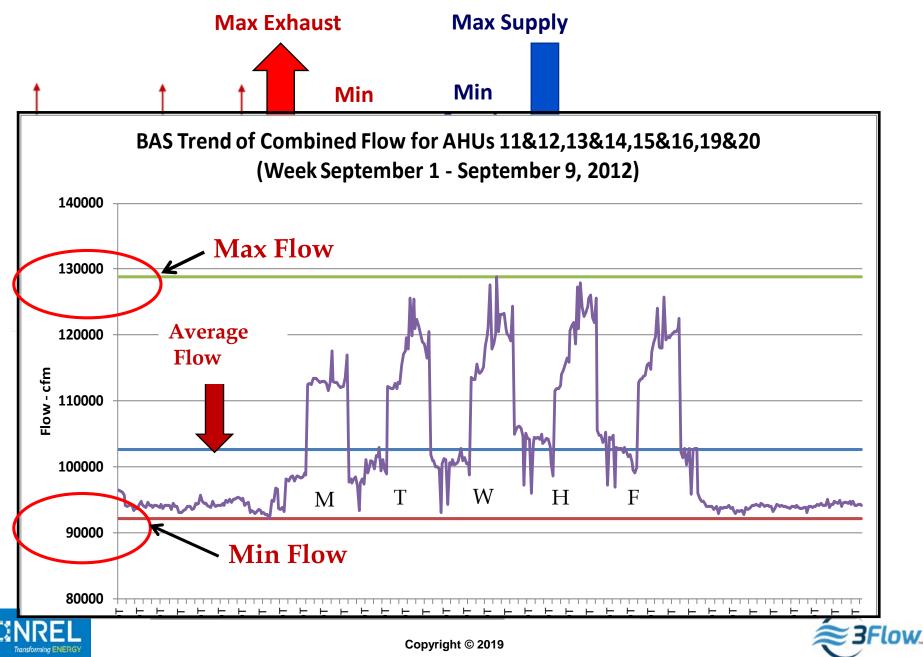
The Demand for Ventilation establishes the design and operating requirements

- Safety (Risk)
 - Fume Hood Flow
 - Contaminant Removal (ACH)
 - Isolation (Lab Pressurization)

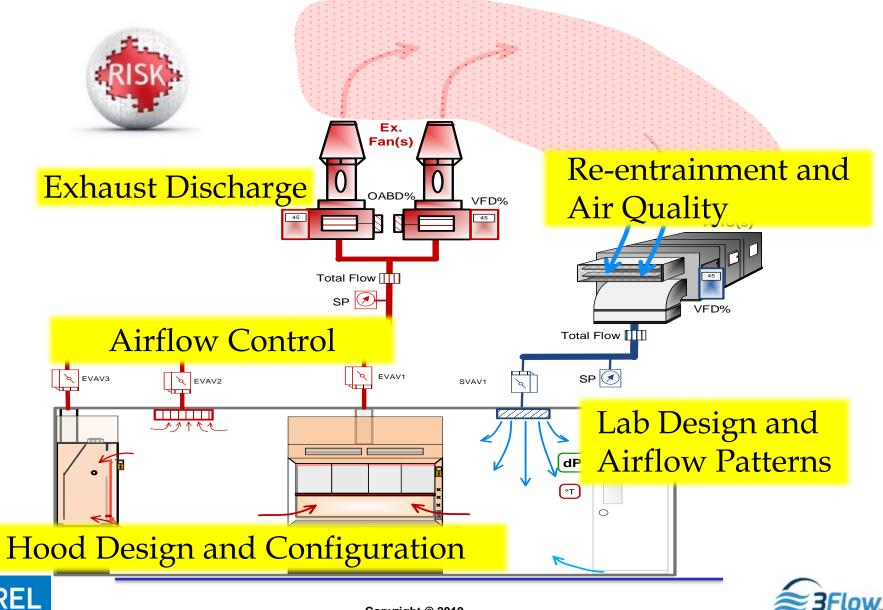
• Comfort & Productivity

- Temperature
- Humidity
- Occupancy & Utilization


Minimum flow and range of modulation required to meet the functional requirements of the occupants

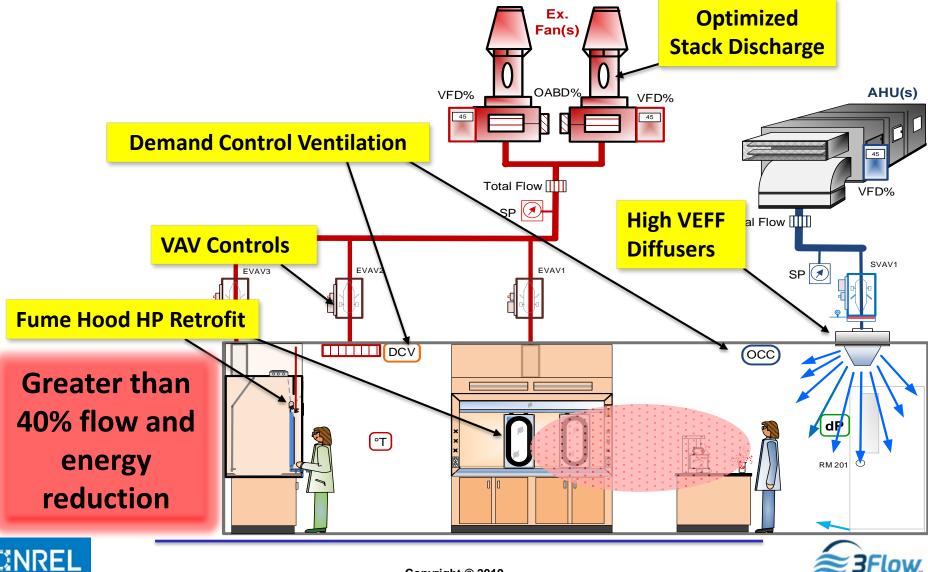


Variable Air Volume (VAV) controls modulate flow to the demand for ventilation


- Unoccupied Sashes Closed Min. Conditioning Required
- Occupied Sashes Closed Max Conditioning Required
- Occupied Sashes Open Min Conditioning Required
- Occupied Sashes Open Max Conditioning Required

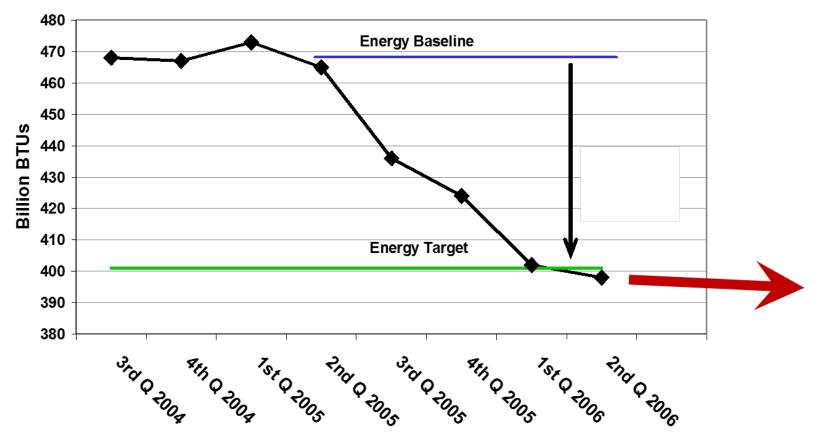
Building Flow Should Modulate to Meet Demand

Many factors affect system performance and risk



Identifying and monitoring key metrics are critical to managing performance Exhaust Supply Average **Demand** \Rightarrow **Operation** \Rightarrow **Energy Airflow Efficiency** Energy BTU/ft² \Longrightarrow \$/ft² \Longrightarrow cfm/ft² \Longrightarrow \$/cfm Maximum savings are achieved by optimizing airflow and system efficiency

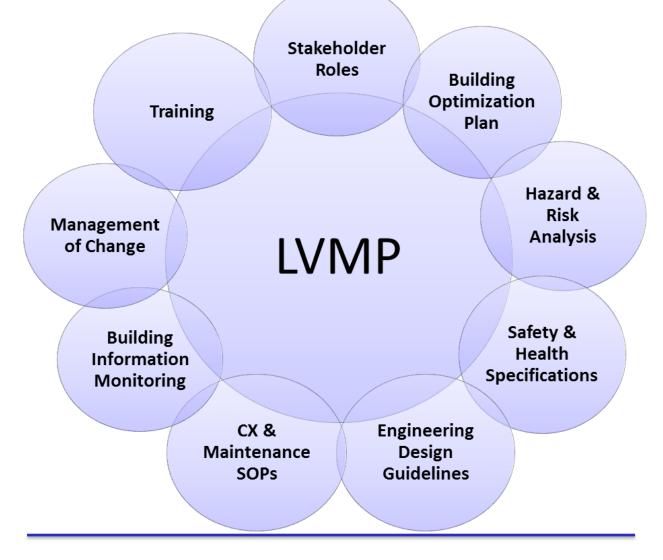
New technologies can be deployed to improve safety and energy efficiency



Copyright © 2019

Efficiency can be improved, energy can be reduced, but can it be maintained?

Campus Wide Aggregate Energy Reduction

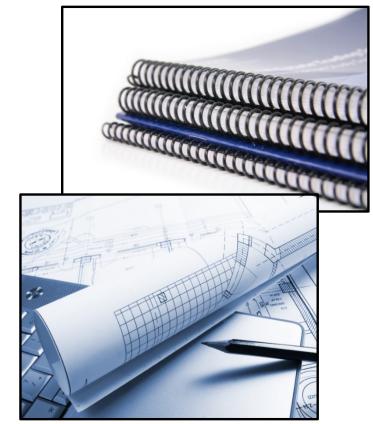


A Lab Ventilation Management Program provides the structure to achieve and maintain safe, energy efficient and sustainable facilities

A Lab Ventilation Management Program is comprised of multiple elements

Leadership and a coordinated team effort are critical to success

- Stakeholder and LVMP Team (In-house and Contractors)
 - Facilities and Energy Engineers
 - Environmental Health and Safety
 - Lab Staff Representatives
 - HVAC Systems Engineer
 - Laboratory Hood Specialist
 - Building Controls Operator
 - Mechanical Maintenance
 - TAB Contractor
 - Commissioning Contractor
- LVMP Manager/Coordinator



The program delivers building operating manuals and training to achieve and maintain performance

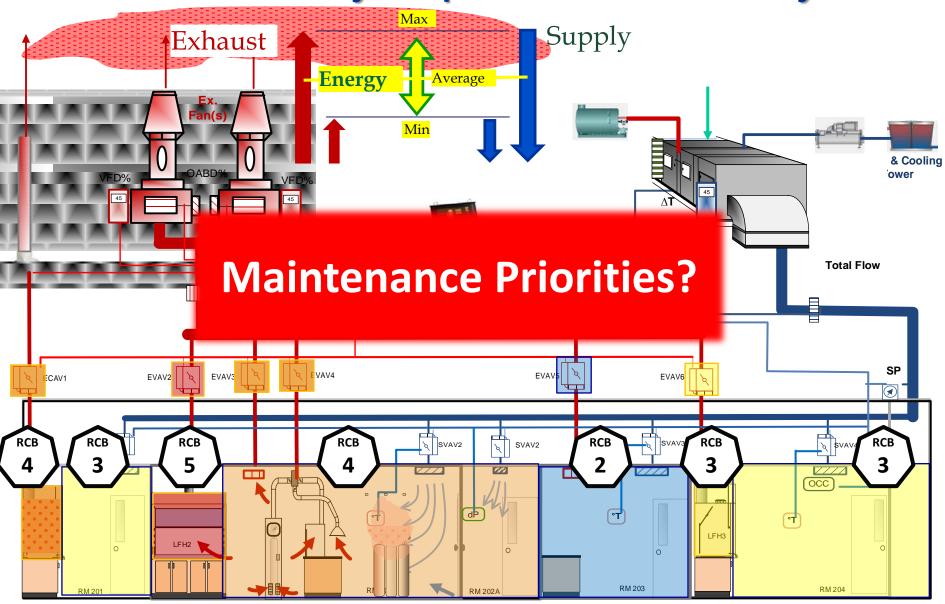
- Equipment Inventories
- System Line Diagrams and Drawings
- Lab Ventilation Risk Matrix
- Airflow Specifications
- Effective Controls and Sequences
- Key Performance Indicators and Metrics
- **Proper Procedures and Guidelines**
 - Routine Tests & Maintenance Tasks
 - Schedules and Management of Change
- Training for Stakeholders

Protect Return On Investment

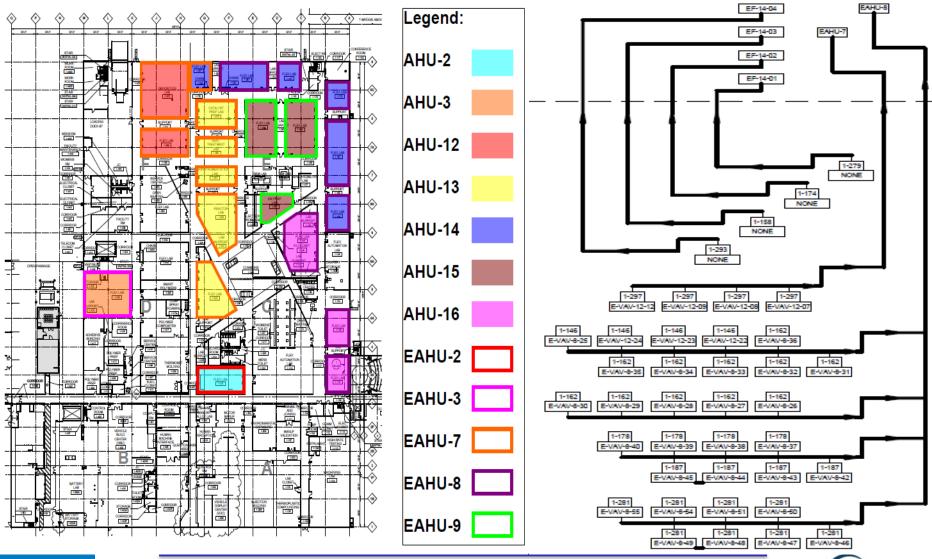
What is the state of the building information and drawings?

✓ Complete? ✓ Clear? ✓ Accurate? THE REPORT JULY IN COLUMN 이가 가진 Do you have? **Master Building Documents Operating Specifications and Key Metrics Maintenance Management Plan Management of Change**

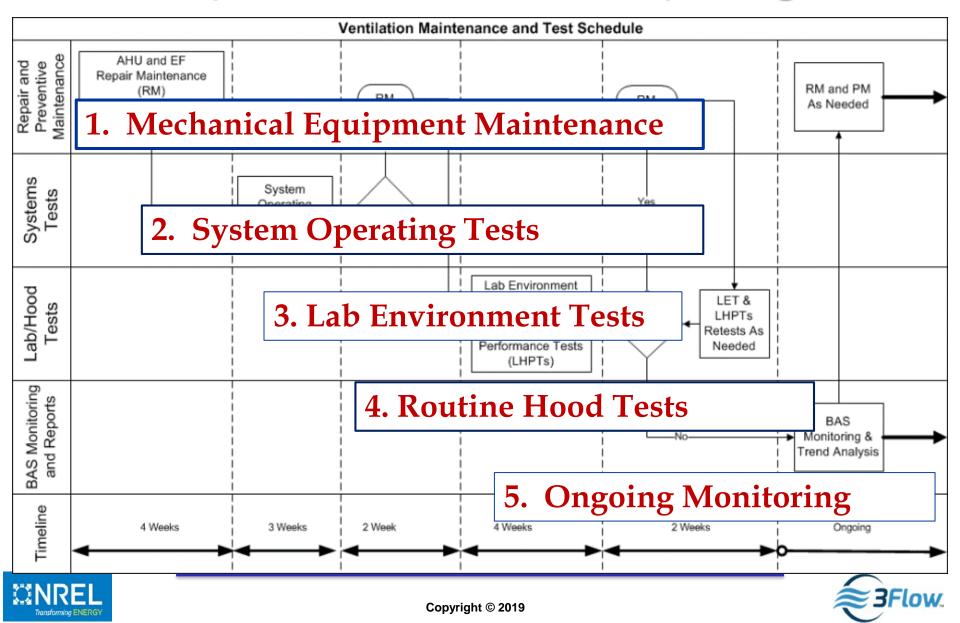
A Risk Assessment can differentiate spaces to identify airflow requirements and priorities

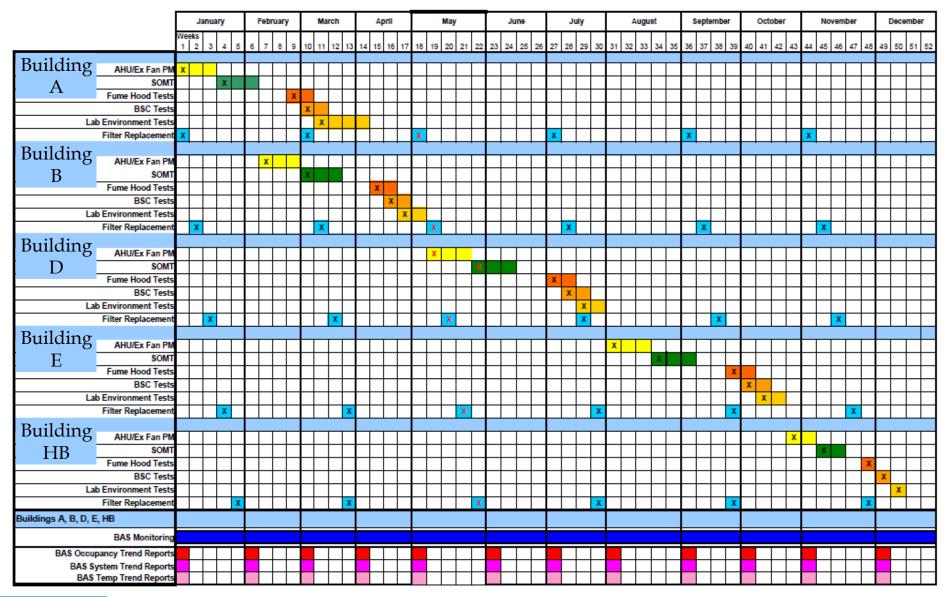

An Airflow Spreadsheet provides specifications to meet the Demand for Ventilation

									Exhaust										
Room Information								Su	Supply				Qex for Exhaust Devices		Room Exhaust Flows				
						Supply		Flow	Hood ID	Open Area -			Max/Min based on Exh Devices, dP, Cond., or ACH		ACH				
Room #	Room Name	Area (ft²)	Height (ft)	Volume (ft ³)	Room Type	Heat Load Label	Control Band #	Room Flow @ Max (cfm)	Room Flow @ Min (cfm)	Greater of Door and 10% Max Exh (cfm)		ft2	Qex at FV	Sash Closed - Unoccupied	Room Max Flow (cfm)	Room Min Flow (cfm)	Max ACH	Min ACH	
728	Research Lab	325	9.0	2925	Stg	Ν	2	193	193	100	FH - CAV	7.9	792	146	293	293	6	6	
											FH - CAV	7.9	792	146					
C					Lab	N	4	1433	1433	150	FH - CAV	7.9	792	792	1583	1583	28	28	
5	pace Info	orma	it10	n 🗋								<u> </u>	792	792					
	_	-	1		Lab	N	1	3797	3797	F F C	CDs		792	792	4222	4222	19	19	
													792	792					
											FH - CAV	7.9	792	792					
						<u> </u>					FH - CAV	18.5	1847	1847					
734	Research Lab	R	isk	Lev	els	-	4	5231	5231	575	FH - CAV	7.9	792	792	5806	5806	27	27	
		1	191			_					FH - CAV	7.9	792	792					
						′					FH - CAV	7.9	792	792					
											FH - CAV	7.9	792	792					
						l					FH - CAV	7.9	792	792					
						Λ	irflo	TAT C	noci	ficat	inno	3.5	1847	1847					
736	Research Lab	290	14.5	4205	Lab		11110		peci	incat	10115	7.3	1729	470	747	747	11	11	
742	December 1 als	255	145	2600	1	<u> </u>	2	4.422	1 4 2 2	450	511 0414	55	702	277	4500	4500	20	26	
742	Research Lab	255	14.5	3698	Lab	L	3	1433	1433	150	FH - CAV FH - CAV	7.9	792	792	1583	1583	26	26	
744	Decerch Lat	000	14 5	12050	Lab	N	4	F224	5221	575	FH - CAV	7.9 7.9	792 792	792 792	5806	E80C	27	27	
744	Research Lab	900	14.5	13050	Lab	N	4	5231	5231	5/5	FH - CAV	7.9	792	792	5806	5806	27	27	
											FH - CAV	7.9	792	792					
											FH - CAV	7.9	792	792				-	
											FH - CAV	7.9	792	792					
											FH - CAV	18.5	1847	1847					
746	Research Lab	900	14.5	13050	Lab	ΝΓ	_				TH - CAV	10.5	1047	1047		306	27	27	
									nd M ly Flo		-H - CAV -H - CAV -H - CAV			nd M 1st Flo					
								-rp	<u> </u>		H - CA							─	
			ļ								FH - CAV	18.5	1847	1847				L	


Sustainability Requires Maintainability

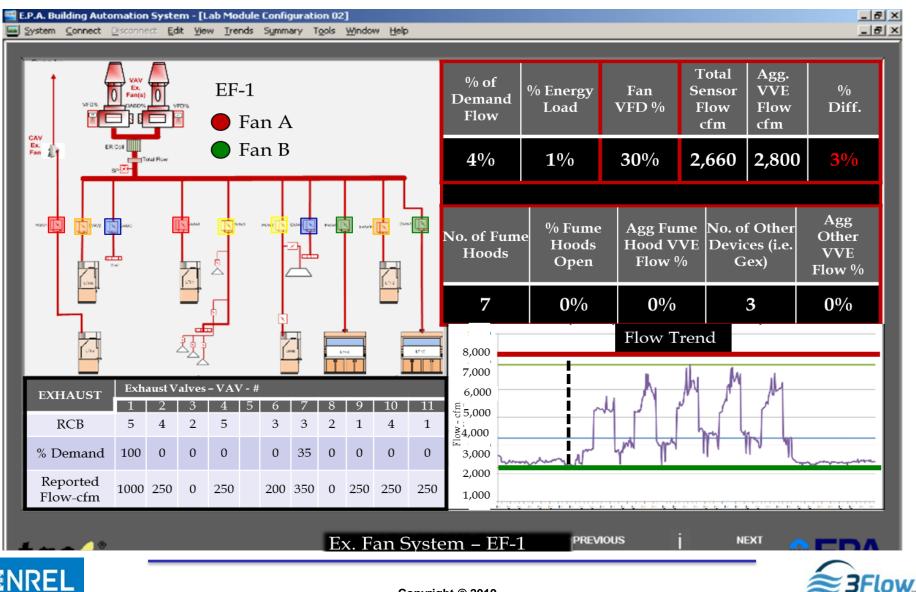
System Information and Line Diagrams Facilitate Management and Operations

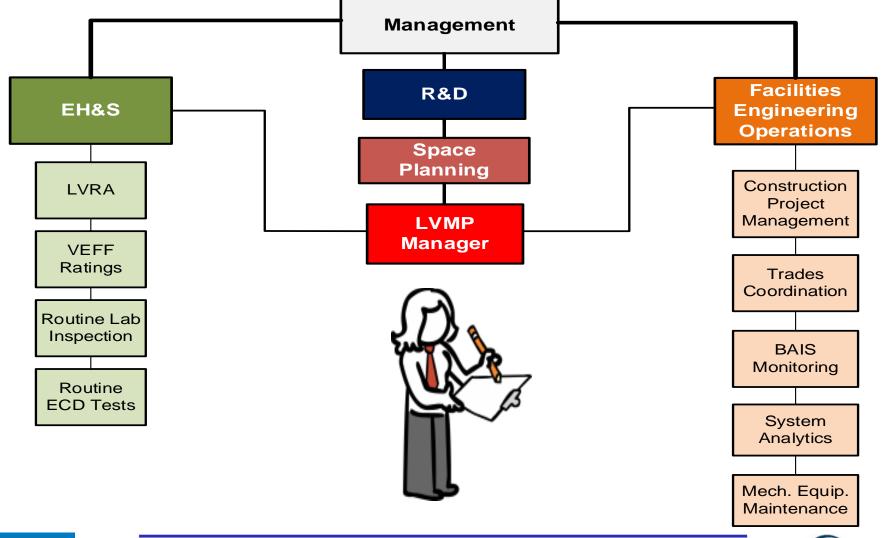



Copyright © 2019

3Flow

Routine test and maintenance tasks are optimized to maintain performance and minimize operating costs


LVMP Multi-Building Task Coordination


Building Information Dashboards enable more effective management and improved sustainability

Copyright © 2019

ansforming ENERGY

The LVMP Manager integrates and coordinates the efforts of key stakeholders

Copyright © 2019

3Flow

Smart Labs[™] includes training for all stakeholders

- Program Managers & Supervisors
 - Facilities Engineering
 - Operations and Maintenance
 - EH&S
 - Lab Management

LVMP Manager Coordinator

Maintenance

Building Operators

Lab Personnel

The LVMP improves performance, mitigates risk and maximizes sustainability

Annual Performance Test

The right flow in the right place at the right time!™

Thank You!

Otto Van Geet, PE

Principal Engineer 303-384-7369 otto.vangeet@nrel.com

Thomas C. Smith President 919-319-4290 <u>tcsmith@3flow.com</u> www.3flow.com

